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ABSTRACT
Limitations in making SSM/I wind speed retrievals at higher wind speeds (w > 15 

m/sec) are investigated and the primary sources of error identified. Whitecaps and 

foam give rise to systematic changes in the empirical transfer functions which are used 

in making SSM/I wind speed retrievals at higher wind speeds. The addition of the 

85GHz(V) channel is shown to improve retrievals at higher wind speeds from the 

SSM/I. A new hybrid retrieval approach has been developed which combines a 

modified neural network (NN) architecture (including 85GHz channel) and modified 

training procedures with an independent correction for a residual systematic error in the 

transfer function which occurs at higher wind speeds. This hybrid approach has 

resulted in a weighted, bias-corrected NN algorithm with five inputs (the “OMB” 

algorithm). Applied to matchup data used in deriving previous SSM/I wind speed 

algorithms, this algorithm yields a bias < 0.2 m/sec and an rms difference < 1.75 m/sec 

for all wind speeds and weather conditions encountered in the matchup database, and 

a bias of ~0.7 m/sec and an rms difference of -2.8 m/sec for wind speeds > 15 m/sec. 

The OMB algorithm is capable of generating wind speeds up to 25- 27 m/sec. It also 

yields an average gain in coverage of -15%, and significantly higher gains in coverage 

for individual synoptic events. This algorithm also reveals detailed structure in the 

patterns of surface wind speed not produced by other retrieval algorithms. It has been 

preliminarily validated using data from both the F10 and F13 SSM/I instruments.

Finally, the application of surface winds retrieved using the OMB algorithm to 

atmospheric and oceanic forecast models is discussed.

n

2



1. INTRODUCTION

Ocean surface winds are required by operational marine forecasters to produce 

accurate surface weather analyses over the global oceans, and by atmospheric 

modelers for assimilation into global and regional weather forecast models. Since the 

late 1970's, both active and passive microwave radiometers aboard polar-orbiting 

satellites have been used to infer wind speed and, in some cases, wind direction over 

the ocean. Algorithms which have been developed to infer surface wind speed for 

these instruments such as the SMMR and the SSM/I, however, have been seriously 

limited in their ability to infer wind speeds under conditions of high atmospheric 

moisture or for wind speeds greater than -15m/sec. Because active synoptic weather 

systems, which are usually characterized by relatively high levels of moisture and 

higher-than-average wind speeds, are of primary interest to the operational forecasting 

community, it is important to develop wind retrieval algorithms which are “robust” both 

with respect to atmospheric moisture and wind speed.

Neural networks (NNs) have recently been used to develop wind speed retrieval 

algorithms based on brightness temperatures (TBs) received from the SSM/I flown 

aboard the l/MSP satellites [Stogryn et al., 1994; Krasnopolsky et al. 1994, 1995], 

Krasnopolsky et al. [1995; referred to as KBG, hereafter] developed a single, 

extended-range NN algorithm (SER NN) together with a wind speed retrieval flag 

based on cloud liquid water path (LWP) v.nich retrieved wind speeds up to -17 m/sec
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for moisture levels up to ~0.5 kg/m2 with a small bias and an rms error of less than 1.7 

m/sec.

Based on our previous work in establishing an acceptable rain flag criterion for 

the SER NN, we are approaching the upper limit for making SSM/I wind speed 

retrievals at higher levels of atmospheric moisture. However, it is likely that further 

refinements to the threshold value of 0.5 kg/m2 can still be made when a more 

extensive database is created which includes significantly more matchups under high 

moisture conditions.

Another limitation of existing SSM/I wind speed retrieval algorithms is that they 

are primarily restricted to retrieving wind speeds with acceptable accuracy only up to 

15-20 m/sec. Often, high wind speed events are accompanied by high levels of 

moisture (e.g., hurricanes), which preclude the possibility of making successful 

retrievals because the moisture threshold is exceeded. For lower levels of moisture, 

however, processes at the ocean surface which directly affect the emissivity of the air- 

water interface establish an upper limit for retrieving surface wind speed. In particular, 

as wind speed increases, wave breaking occurs which produces whitecaps and foam. 

Eventually, when the ocean surface becomes completely obscured by foam, microwave 

emissions from the surface no longer change as wind speed increases. Therefore, an 

additional physical limitation in retrieving SSM/I wind speeds, based on the wind speed 

itself exists, which limits the range of SSM/I wind speed retrievals to the interval (0, 

wmax) It is difficult to estimate the value of wmax from theoretical considerations alone 

however, observational estimates indicate that this threshold occurs in the vicinity of 30
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m/sec [Bortkovskii, 1987; Monahan and Mac Niocaill, 1986; Swift, 1990], Clearly, 

based on these estimates, significant improvements can still be made to existing NN 

algorithms by extending their range of applicability from (0,16-17) m/sec, to (0,25-30) 

m/sec. In what follows, we describe a new NN algorithm with extended wind speed 

retrieval capabilities.

The SSM/I is a seven-channel passive microwave radiometer. This instrument 

receives vertically-polarized (V) radiation at 22.2GHz and vertically- and horizontally- 

polarized (H) radiation at 19.3, 37.0, and 85.5GHz. The SSM/I has a nominal spatial 

resolution of 12.5 km at 85.5GHz and a resolution of 25 km at 19.3, 22.2 and 37.0GHz. 

For additional information concerning the SSM/I, see Hollinger et al. [1990],

In Section 2, we discuss why both empirically- and theoretically-derived 

algorithms encounter problems in reproducing high wind speeds. In Section 3, it is 

shown that TBs at 85GHz(V) are sensitive to changes in wind speed, and an improved 

training approach is introduced which extends the high wind speed limit of the NN 

algorithm which we develop. A new, weighted NN algorithm is introduced which uses 

five channels from the SSM/I (four previous channels plus 85GHz(V)). We then 

examine the bias of the new algorithm as a function of wind speed and introduce a 

simple bias correction which further improves the high wind speed retrieval capability of 

the weighted NN (WNN). In Section 4, we introduce a new matchup database based 

on TBs acquired from the F10 SSM/I instrur it. We use this new database to 

compare the current operational algorithm [Goodberlet, Swift and Wilkerson, 1989; 

hereafter referred to as GSW] with the new WNN and the bias-corrected WNN
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algorithms. Finally, we examine the dependence of retrieval accuracy for the GSW and 

the NN algorithms on the spatial and temporal resolution of the data. Section 5 

contains our conclusions.

2. OBTAINING RETRIEVALS AT HIGHER WIND SPEEDS

Several sources of error affect the accuracy of SSM/I retrieval algorithms. First, 

there are errors due to the buoy measurements themselves. Second, errors arise 

because wind speeds are not uniformly distributed. A third source of error is due to the 

lack of coincidence in space and time between the ground-truth and the satellite 

observations in creating the wind speed matchups. Also, the matchups consist of 

inherently different types of observations. On the one hand, buoy wind speeds 

correspond to point measurements averaged over time; on the other, the satellite 

measurements are acquired instantaneously but are essentially area-averaged. A 

fourth source of error arises from the physical limitations of microwave remote sensing 

of wind speed when the ocean surface becomes whitecap foam covered. This error 

manifests itself as a systematic change in the empirical transfer function that defines 

the wind speed -SSM/I brightness temperature (TB) relationship at higher wind speeds.

2.1 Buoy data accuracy

All SSM/I wind speed retrieval algorithms to date have used observations from 

ocean data buoys for algorithm development and validation. Empirically-derived
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algorithms approximate empirical transfer functions, i.e. the relationship between the 

SSM/I TBs and the buoy wind speeds [e g., GSW; Goodberlet and Swift, 1992; Stogryn 

et al., 1994; KBG]. Theoretical algorithms based on the radiative transfer equations 

also use buoy data for certain model parameterizations [e.g., Petty and Katsaros, 1994] 

and validation [e.g., Wentz et al., 1991], Thus, any problems associated with the buoy 

observations themselves, directly affect the accuracy of the algorithms which are 

derived, especially at high wind speeds. According to Gilhousen [1986], wind speed 

accuracy for the anemometers deployed on National Data Buoy Center (NDBC) buoys 

is ±0.5 m/sec for winds less than 10 m/sec and ±5% of the wind speed for winds 

greater than 10 m/sec. Thus, there are significant uncertainties associated with buoy 

measurements of wind speed and they become particularly important at high (w > 15 

m/sec) wind speeds. Also, because these errors are essentially random, they 

contribute primarily to the scatter.

Buoy wind speed observations at higher wind speeds are limited because high 

wind speeds are a relatively infrequent occurrence, and additionally because many of 

the fixed buoys (upon which the matchups are based) are located in partially-sheltered 

coastal areas. These problems have been recognized and discussed elsewhere [e.g., 

Pierson and Sylvester, 1995], In the SSM/I/F8 matchup database, the maximum buoy 

wind speed is 21.2 m/sec. In the SSM/I/F10 database which we have recently 

assembled, the maximum wind speed is 21.4 m/sec (Section 4). In the SSM/I/F8 

matchup database- (3958 matchups), there are very few measurements of wind speed 

higher than 17-18 m/sec, and only 44 matchups (~1%) at wind speeds higher than 15
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m/sec. The observed wind speed distribution (Fig. 5) is clearly nonuniform, and based 

on theoretical considerations, wind speed data are generally expected to follow a 

Rayleigh distribution [e.g., Breckling, 1989].

Nonuniform wind speed distributions create significant problems for algorithm 

development because they imply fewer observations at the tails of the distribution.

The nonuniformity of wind speed distributions creates an additional problem for 

algorithm validation due to the interaction of random errors in buoy wind speed data 

with a nonuniform wind speed distribution [Tolman, 1995]. This interaction may 

produce an additional nonrandom error which increases with the wind speed and 

introduces an additional positive bias at high wind speeds.

2.2 Matchup errors

Both the training and the test data consist of matchups which compare two 

inherently different types of observations, (i), buoy wind speeds acquired from 

anemometers which are point measurements at a fixed elevation above the ocean 

surface averaged over intervals of 8.5 minutes, and (ii), instantaneous satellite 

observations that cover an approximate 25 km * 25 km footprint on the ocean surface 

(at the four lowest SSM/I frequencies). Even for perfect matchups (where the center of 

the SSM/I footprint coincides precisely with the buoy location, and the time of the buoy 

measurement coincides precisely with the time of the satellite measurement), an 

additional error is introduced because of the differences in the space-time windows 

which must be employed. Thus, the inherent variability of wind speed within the
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satellite footprint over an 8.5 minute period (t) may be an additional source of error that 

enters into the matchup. If this variability is truly random, no bias is expected; 

however, for a 25 km * 25 km footprint, we may expect an additional contribution to 

the observed scatter on the order of 0.5 m/sec [Overland and Gemmill,1977; Monaldo, 

1988], Additionally, because most of the NDBC buoys are located in coastal regions 

where small-scale, transient high wind speed events frequently occur (vs. over the 

open ocean far-removed from land and boundary currents), there may be higher 

natural variability in wind speed and, thus, higher matchup errors at the higher wind 

speeds.

A related problem associated with matching the buoy and satellite data arises 

because perfect matchups occur infrequently and, as a result, the time interval Rt and 

the distance Rs between the buoy and satellite measurements must be expanded in 

order to obtain statistically-meaningful sample sizes. Because of the finite satellite 

footprint dimension rs, the minimum uncertainty in distance is equal to 0.5 rs (-6.25 km 

at 85GHz and -12.5 km at the four lower SSM/I frequencies). In the general case, the 

uncertainty in distance is equal to Rs> 0.5 rs, and the uncertainty in time is equal to Rt 

z t. Both of these uncertainties introduce additional errors which are due to the natural 

variability in wind speed over the scales Rs and Rt. Because these errors are 

essentially random, they contribute primarily to the scatter.
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2.3 Physical limitations of microwave retrievals at higher wind speeds

At low wind speeds, the increase in ocean surface roughness with increasing 

wind speed produces a TB dependence on wind speed. At higher wind speeds, waves 

begin to break producing whitecaps and foam (called whitecap foam from hereon). At 

wind speeds of ~10 m/sec [Swift, 1990] or less [Monahan and O’Muircheartaigh, 1986], 

whitecap foam starts to contribute significantly to TB at microwave frequencies. The 

surface area covered by whitecap foam increases rapidly with increasing wind speed 

at higher wind speeds. At some limiting value of wind speed, w^, when the surface 

area covered by whitecap foam becomes appreciable, the TB dependence on wind 

speed breaks down. Although it is difficult to estimate precisely, Bortkovskii 

[1987], Monahan and MacNiocaill [1986] and Swift [1990] provide estimates of the area 

covered by whitecap foam as a function of wind speed. Empirical relationships have 

been developed from these observations that express the relationship between 

whitecap foam coverage as a function of wind speed.1 They usually follow a simple 

power law relationship between whitecap foam coverage (S in percent) and wind 

speed, w,

S = aw“ (1)

1Monahan and 0’Muircheartaigh(1986) have shown that although whitecap foam 
coverage is primarily related to wind speed, it also depends on the air-water 
temperature difference, the water temperature per se, and the effective wind duration.
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where a and arare the empirically-determined constants shown in Table 1 Fig. 1 

shows four different parameterizations (Table 1) extrapolated up to S = .00%. Despite 

the uncertainties involved, these results provide at least rough estimates for w^.

For 10 m/sec < w < w^max, surface emissions from the rough ocean surface and 

the foam-covered areas both contribute to the TB signals sensed by the SSM/I. 

Because whitecap foam acts roughly as a black body radiator, TBs from the foam- 

covered areas far exceed those emitted by the non-foam-covered areas. Thus, the 

physical mechanism which primarily contributes to the signal received by the SSM/I at 

higher wind speeds is quite different. When the wind speed is about 10 m/sec, less 

than 5% of the surface is covered by whitecap foam; thus, it may be reasonable to 

assume that further retrievals become difficult, or perhaps impossible, when at least 

50% or more of the ocean surface is covered by whitecap foam. Table 1 shows 

estimates for which fall between 25 and 32 m/sec for 50% coverage (Swift [1990] 

estimated a value of 40 m/sec for 100% whitecap foam coverage). This threshold, 

although imprecise, represents an upper limit for retrieving surface wind speeds using 

microwave radiometry.

Previous empirical SSM/I wind speed retrieval algorithms have been based on 

the assumption that the retrieved wind speed depends only on TB, or expressed in 

terms of the SSM/I transit; function (see KBG),

w = f(T) (2)
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where f is the transfer function, and 7 = {tt7} is a TB vector containing a maximum 

of 7 elements. At low wind speeds, surfase roughness determines the wind speed 

dependence on TB. At higher wind speeds, when whitecap foam formation becomes 

important, the functional dependence between TB and wind speed changes, and 

retrievals based on (2) may become ambiguous if the wind speed itself is not taken into 

account. The simple representation expressed in (2) can be generalized for higher 

wind speeds, as

w = F(T,w) (3)

Therefore, at higher wind speeds, the SSM/I retrieval algorithm, based only on SSM/I 

TBs (i.e., the transfer function f, in (2)), may generate wind speeds with a systematic 

error due to the difference between the correct transfer function, F, and the original 

transfer function, f. This systematic error (hereafter refer to as the 5-error), contributes 

to the bias (and thus the rms error) at wind speeds >10-15 m/sec and reflects the 

change in mechanisms at the ocean surface which contribute to TBs at higher wind 

speeds. These errors (together with the lack of sufficient matchup data at high wind 

speeds) are primarily responsible for underestimating high wind speeds in previous NN 

algorithms.
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3. A NEURAL NETWORK ALGORITHM WITH IMPROVED HIGH WIND SPEED

RETRIEVAL CAPABILITY

To develop a new NN algorithm which is capable of generating higher wind 

speeds than our previous NN algorithm, we have initially examined the sensitivity of the 

different SSM/I channels to changes in wind speed, and then developed a new training 

strategy, followed by a correction for the expected systematic residual error. As a 

result, a new NN architecture has been developed which differs significantly from that 

used previously by Stogryn et al. [1994], or by KBG.

As in KBG, we use the same SSM/I TB/buoy wind speed matchup database that 

was originally compiled by GSW. This database consists of matchups from the F8 

SSM/I instrument which has been used in previous algorithm development and 

validation by GSW, Wentz [1989], Stogryn et al. [1994], and KBG. A complete 

description of this database can be found in GSW or KBG.

3.1 Channel sensitivity to wind speed

KBG previously examined the utility of the 85GHz channels to improve the 

accuracy of SSM/I wind speed retrievals and showed that under cloudy conditions 

inclusion of the 85GHz channels yielded a slight reduction (-10%) in rms error. We 

now examine the sensitivity of the different channel outputs, including the 85GHz 

channels, to changes in wind speed. With respect to the SSM/I channelization, wind 

speed may be considered to be a function of the seven SSM/I TBs. These TBs,
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{TJNi=1, which are contained in the training matchups, produce a cluster of points that 

cover a finite connected domain in seven-dimensional space. The centroid of this

cluster is calculated as

(4)

The mean radius of this cluster is

(T-T0)2)
N i=i

(5)

If a continuous transfer function f exists, then this domain is a connected domain and 

the TBs, T'for wind speeds in any bin w1 s w'< w2 create a connected subdomain or 

subcluster. The centroid of this bin cluster T0\ and its mean radius Rcan be 

calculated using (4) and (5); however, a summation over / must now be performed over 

the number of TB vectors in each bin cluster, NSimilarly, the projection of the 

centroid of the bin cluster on the y'-th axis, corresponding to the y-th TB, and the mean 

radius of this projection can be calculated.

We examine these bin cluster characteristics as functions of wind speed (Fig. 2). 

Three channels, 22GHz(V), 37GHz(H) and 85GHz(V), are highly sensitive to changes 

in wind speed. In addition to the original four channels that have been used in most 

previous SSM/I wind speed retrieval algorithms, the 85GHz(V) channel also depends 

on wind speed and, consequently, has been included in the development of a new
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retrieval algorithm. Fig. 2 also shows a distinct change in the functional dependence at 

higher wind speeds (w > 15 m/sec) for all channels which may be due to significant 

contributions from whitecap foam (and/or the limited sample sizes for these bins).

3.2 Training strategy

Because there are very few matchups available at higher wind speeds (w > 15 

m/sec), the distribution of wind speeds in the training set is highly nonuniform (Fig. 5).

If we use the standard cost function for NN training (e.g., Wasserman, 1989) where all 

of the data are equally weighted, the few matchups that do exist at high wind speeds 

become completely obscured in the training process. This problem can be reduced if a 

weighted cost function is used instead of the standard cost function for training, where 

the weighted cost function can be expressed as

£ = ^ E «, <*, -», y (6)

Here, N is the number of matchups in the training set, the W) are the wind speeds 

obtained during the training process, the w, are the observed buoy wind speeds, and 

the a; are the weights. Because a uniform data distribution is clearly preferable for 

training (e.g., Cheng and Titterington, 1994), the distribution of the a, can be chosen to 

compensate for the inherent nonuniformity of wind speeds in our training set. A 

distribution which is inversely proportional to the square root of the wind speed 

distribution is an acceptable choice. For such a weighting scheme, the highest wind
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speeds are emphasized and the NN is forced to learn more from these few cases. The 

penalty, of course, is that any errors in these data will be amplified during the process 

of training.

As mentioned in Section 2, both random and systematic errors in wind speed 

increase with increasing wind speed. Fortunately, NNs are somewhat insensitive to 

random errors of high amplitude when they are properly designed [Kerlirzin and Vallet, 

1993]; however, they are sensitive to systematic errors. NNs provide a valid model for 

the transfer function f in (2) for low-to-medium wind speeds. At higher wind speeds, 

the transfer function F in (3) is valid. The wind speeds generated by the weighted NN 

(WNN) at high wind speeds contain systematic errors which are due to the differences 

between f and F (see Section 3.4).

4

3.3 Weighted NNs

Following the approach outlined in the previous sections, we have chosen a new 

architecture for the SSM/I wind speed retrieval algorithm. This NN has one input layer 

with five inputs, the four channels which have been used in previous algorithms (19V, 

22V, 37V, and 37H) and the additional 85GHz(V) channel, one hidden layer with two 

nodes, and an output layer containing one node. In preparation for training the NN, 

the weights a; in the cost function (6) were generated using the following formula,

yjp&t )
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where p(w) is the observed wind speed probability distribution and C is a normalization 

constant. This choice of weights allows us to assign higher values to the tails of the 

distribution and effectively produces a distribution which is approximately uniform. By 

introducing the square root in the denominator of (7), we have restricted the rate of 

increase in the weights and thus reducing any noise-like influences at the highest wind 

speeds.

Table 2 shows the summary statistics for four different algorithms, the original 

GSW algorithm, the SER NN (our original NN algorithm), the WNN4, the weighted NN 

algorithm with four inputs, and finally, the WNN5, the weighted NN algorithm with five 

inputs. Only the statistics for clear atmospheric conditions (i.e., for low levels of 

moisture) are included, i.e., the case where the GSW algorithm performs best. Table 2 

shows that (1) the weighted NNs are capable of generating higher wind speeds, (2) 

appropriate weighting of the cost function at high wind speeds amplifies the noise (as 

expected), producing slightly less favorable statistics compared to the SER NN, (3) the 

weighted NN with five inputs (WNN5) outperforms the weighted NN with four inputs 

(WNN4) both in terms of extended high wind speed generation capability plus improved 

statistics (in this case, similar to those obtained using the SER NN), and (4) all NN 

algorithms outperform GSW.

Table 3 shows the same information as Table 2 but for the clear plus cloudy 

case. In addition, the statistics for high wind speeds only (w > 15 m/sec) are included 

(these statistics are not presented in Table 2 bea se of insufficient sample size for the 

clear case). Because of buoy data inaccuracies and the matchup problems indicated
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earlier at high wind speeds, the statistics for high wind speeds should be treated with 

caution. We conclude that the WNN5 algorithm demonstrates the best overall 

performance for the clear plus cloudy case. Finally, for high wind speeds the table 

shows that although the GSW algorithm has the ability to generate high wind speeds, 

the standard deviation in this case is much higher than the standard deviation for the 

observed wind speeds.

An additional characteristic of NN algorithms can be introduced which is 

important for evaluating their ability to generate high wind speeds. This characteristic 

corresponds to a well-defined maximum output value which, by virtue of the weights 

which are derived during training, can be generated by a particular NN. For any input 

TBs, the output wind speed cannot exceed this value, a value referred to here as W& 

The equations for calculating W^are given in the Appendix. Table 4 shows Wa for the 

SER NN, WNN4, and WNN5 algorithms and clearly demonstrates significant 

improvement in high wind speed generation capability, progressing from the SER NN to 

the WNN5 algorithms.

3.4 Bias correction

From Section 2.3, we expect the systematic 6-error to increase with increasing 

wind speed at higher wind speeds. In terms of the transfer function, f, (2) is valid only 

for low-to-moderate wind speeds. To include higher wind speeds, f should be 

generalized as shown in (3) where the generalized transfer function F now depends on 

the wind speed itself, as well as the TBs. We can, in principle, use the NN approach to
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develop a NN model for the transfer function expressed in (3); however, the 

corresponding NN architecture will oe more complicated and will require the addition of 

a feedback loop (i.e., recurrence). As a practical alternative, we consider a simpler 

approach based on our expectation that the systematic wind speed-dependent 6-error 

will give rise to a wind speed-dependent bias. Fig. 3 shows the binned bias as a 

function of wind speed (calculated as the difference between the buoy and the WNN- 

generated wind speeds) for the training set (dashed line). This bias has a systematic 

trend which we approximate by the following expression,

b(w) = a + b (w - c)3 (1 - exp(-dw)) (8)

where a = 0.5 m/sec, b = 0.004 secern2, c = 10 m/sec, and d = 0.5 sec/m. This 

approximation is represented by the solid line. The bias correction (8) increases rapidly 

at wind speeds > 10 m/sec and is apparently related to the change in the dominant 

mechanism generating the TB wind speed signature which occurs in the vicinity of 10 

m/sec when whitecap foam, rather than surface roughness, constitutes the major 

emission from the ocean surface. Fig. 2 also shows the bias for the test set (dash- 

dotted line). Equation (8) yields a satisfactory approximation for these data as well.

The existence of such a well-defined wind speed-dependent bias may be interpreted in 

terms of the transfer function as follows. By decomposing the transfer function 

expressed in (3) into the sum of two terms, it may now be approximated as,
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F(T,w) = f(T) + b(w) (9)

where f is the transfer function given in (2) which depends only on TB, and b(w) is the 

wind speed-dependent bias given by (8). ; uc

We now use our weighted NN (i.e., WNN5) as a model for the transfer function f 

in (9) to retrieve the wind speed w corresponding to the TBs, 7, where

w= f(T) - WNN5(T) (10)

By applying the bias correction b(w) to this wind speed we obtain the wind speed wc 

which is now corrected for the systematic error,

wc = w + b(w) (11 )

In these calculations, the same training set has been used for developing the WNN 

algorithm and for calculating the bias correction, b(w).

Equations (10) and (11) together constitute an algorithm which we call the bias- 

corrected WNN5 or OMB2 algorithm. Table 5 shows summary statistics for the WNN5, 

the OMB, and the BWNN4 (WNN4 with four inputs including the bias correction (8)) 

algorithms, and separate high wind speed statistics for the GSW, OMB and BWNN4

20cean Modeling Branch (OMB), Environmental Modeling Center of the National 
Centers for Environmental Prediction.
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algorithms. The OMB algorithm clearly outperforms the other algorithms. Fig. 4 shows 

a binned (bin size = 2 m/sec) scaler plot for the three NN algorithms. We see 

successive improvements in high wind speed performance, with no degradation at the 

lower wind speeds in progressing from the SER NN to the WNN5, and eventually to the 

OMB algorithm. Both BWNN4 and OMB produce high wind speed statistics which are 

significantly better than those produced by GSW. That the bias correction is compatible 

with both the WNN5 and WNN4 algorithms indicates that this correction is independent 

of the NN architecture and is consistent with our assumption that it is due to a 

systematic error in the original transfer function. Fig. 5 shows the observed wind speed 

distribution together with the SER NN- and OMB-generated wind speed distributions. 

The wind speed distribution generated by the OMB algorithm is much closer to the 

observed, reproducing both the high and low wind speed tails of the distribution.

4. VALIDATION AND MATCHUP UNCERTAINTIES

All of the results described in the previous section have been obtained using the 

matchup database created by GSV 'hich only contains SSM/I data from the F8 

instrument. This database contains a limited number of SSM/I TB/buoy wind speed 

matchups with a spatial uncertainty Rs < 25 km and a temporal uncertainty Rt < 0.5 hrs. 

To validate the OMB algorithm with data from different SSM/I instruments, and to 

investigate the dependence of retrieval accuracy on matchup uncertainty, we have
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created a new matchup database containing approximately 27,000 SSM/I BT/buoy wind 

speed matchups from the F10 SSM/I instrument with a spatial matchup uncertainty 25 

<r Rs < 100 km, and a temporal matchup uncertainty 0.5 < Rt < 3.0 hour. Because the 

buoy data have been preprocessed with a roundoff error of ~0.5 m/sec, an additional 

random error of approximately 0.3 m/sec rms has been introduced. Although the SSM/I 

instrument on the F10 DMSP satellite has certain problems related to the ellipticity of 

the orbit which effects the scanning geometry and thus reduces retrieval accuracy for 

all algorithms, we have nonetheless used the data from this instrument to compare the 

performance of the various algorithms.

These data have been used to create 24 subsets with different spatial and 

temporal matchup uncertainties. For the spatial matchup uncertainty, we use the 

following four values, Rs = {25, 50, 75, 100} km, and for temporal matchup uncertainty 

the following six values, Rt = {0.5, 1, 1.5, 2, 2.5, 3} hours. For each subset we have 

calculated total and high wind speed (w > 15 m/sec) statistics (biases and rms errors) 

for the GSW, WNN5 and OMB algorithms. These statistics are shown in Fig. 6 as 

functions of Rs and R> Figs. 6a,b show the biases and rms errors for clear atmospheric 

conditions, Figs. 6c,d, for clear plus cloudy conditions, and Figs. 6e,f show the high 

wind speed (wind speed > 15 m/sec) statistics. We summarize the information 

contained in these figures below:

• For all weather conditions, both NN algorithms outperform the GSW algorithm. 

The total statistics for the OMB algorithm are similar to those for WNN5. Under clear 

plus cloudy conditions, the biases and rms errors are unacceptably high for GSW,
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whereas both the WNN5 and OMB algorithms yield biases and rms errors which are 

acceptable for operational use. Additionally, the NN-based algorithms produce an 

expanded retrieval domain from clear, to clear plus cloudy, conditions yielding an 

increase in retrieval coverage of -15%. This result is particularly significant for 

obtaining more complete coverage of synoptic-scale weather systems such as 

extratropical cyclones which typically have higher levels of moisture and higher wind 

speeds.

• At high wind speeds, the OMB algorithm performs significantly better than WNN5 

or GSW. This demonstrates that the bias correction which was derived using the F8 

data performs satisfactorily using the data from F10 as well, and thus tends to be 

instrument-independent.

• Both NN algorithms display a gradual degradation in performance with 

increasing temporal and spatial matchup uncertainty. They perform best on data with 

the lowest matchup errors. Thus, the NN algorithms provide an accurate 

approximation for the transfer function f; they are also robust with respect to random 

errors in the matchups.

• GSW demonstrates an opposite trend with respect to increasing matchup 

uncertainties in both time and space. The biases and rms errors decrease with 

increasing matchup uncertainty (the standard deviation increases, however). Thus, the 

GSW algorithm only anoroximates the transfer function, f, in a mean sense. As a 

result, this algorithm p rms optimally when the retrievals are av ^aged over relatively 

larg*. space and time intervals.
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• The last two conclusions have direct implications for the assimilation of SSM/I 

wind speeds into atmospheric and ocean forecast models. For matchup uncertainties 

of the order of 100 km and 3 hours (typical resolutions for global models), the GSW and 

NN algorithms yield the smallest differences in bias and rms error. The primary 

advantage of the NN-based algorithms in this case is the gain in coverage due to the 

inclusion of cloudy (i.e., high moisture) data in the retrieval process. The NN-based 

algorithms display greater benefits for low matchup uncertainties (which correspond to 

higher model resolutions) where they provide significant improvements both in terms of 

accuracy and coverage.

Although the gain in coverage due to the inclusion of cloudy data in the retrieval 

process is estimated to be roughly 15%, this value is based on global estimates for an 

extended period of time. Local and short-term increases in coverage may be much 

more impressive and may reach 30% in some cases. Moreover, from a synoptic 

standpoint, when high levels of moisture are accompanied by high winds, the NN- 

based algorithms (especially the OMB algorithm) may reveal detailed structure in 

surface wind fields which could be completely missed using the GSW algorithm. In this 

regard, Fig. 7 shows an intense storm which occurred over the south Australian Basin 

on 24 August 1995 centered at 47.5°S and 122°E with an analyzed central pressure of 

982 mb. The storm created winds in the 25 m/sec (50 kt) range over an extended area. 

Figs. 7a,b,c show the event as it was seen by the F10 instrument, and Figs. 7d,e,f, by 

the F13 instrument. Figs. 7a and d show the surface wind speeds retrieved using 

GSW, Figs. 7b and e, using SER NN, and Figs. 7c and f, using the OMB algorithm.
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The transition from GSW to SER NN, and then to the OMB algorithm, clearly shows the 

increase in coverage just described. In addition, the OMB algorithm reveals a rich and 

detailed structure in this synoptic field which is completely missed by the GSW 

algorithm and significantly smoothed by SER NN algorithm.

5. CONCLUSIONS

We have presented a new NN-based algorithm for SSM/I wind speed 

retrievals which demonstrates high retrieval accuracy together with the ability to 

generate high wind speeds with acceptable accuracy. The 85GHz(V) channel, which 

has not been used in previous SSM/I wind speed retrieval algorithm development, was 

shown to be sensitive to changes in wind speed and thus has been incorporated in the 

new algorithm. This sensitivity at 85GHz may be related to the higher spatial resolution 

of the SSM/I at this frequency.

Previous algorithms have not performed well at high wind speeds. This problem 

may be due to several factors including increased buoy wind speed errors at high wind 

speeds, nonuniformity of the wind speed distribution, matchup uncertainties, and 

systematic errors which occur at high wind speeds due to the presence of whitecaps 

and foam. A practical upper limit for making SSM/I wind speed retrievals, based on 

physical considerations, may be as low as ~30 m/sec.
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A new NN training strategy which includes preferential weighting at high wind 

speeds was introduced to compensate for the nonuniformity in the distribution of 

observed wind speeds. A hybrid approach has been developed which combines a 

weighted NN and a wind speed-dependent bias correction for systematic errors which 

occur at high wind speeds. This bias correction increases rapidly at wind speeds > 10 

m/sec and is apparently related to the change in the dominant mechanism responsible 

for generating the TB wind speed signature which occurs in the vicinity of 10 m/sec. A 

new algorithm (OMB) based on the hybrid approach was developed for retrieving SSM/I 

wind speeds which produces operationally-useful retrievals up to 25 - 27 m/sec. Also, 

an important characteristic of NNs which determines their theoretical maximum output 

has been introduced and applied to our particular problem.

The OMB algorithm was tested on matchup data for the F10 SSM/I instrument 

and showed significant improvement both in the accuracy of the retrievals and in 

increased areal coverage. The NN algorithm demonstrates the greatest improvement 

in retrieval accuracy based on accurate, high-resolution matchups (with low matchup 

uncertainty). Consequently, higher-resolution atmospheric and ocean forecast models 

will benefit to a greater extent than lower-resolution models from the inclusion of 

surface wind speed data produced using the OMB algorithm.

The OMB algorithm was applied to an extratropical cyclone in the southern 

hemisphere which contained both significant moisture and high wind speeds. Wind 

speeds from both the F10 and F13 instruments were retrieved. These retrievals, based
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on the new algorithm, showed major improvements in resolving details in the surface 

wind speed field.

Finally, the new algorithm (including both the weighted NN and the bias 

correction) has been developed using only the SSM/I F8 database. This database has 

many limitations; it does not have a sufficient number of matchups at high wind speeds, 

high latitudes are poorly represented, and matchup uncertainties could be improved. 

Taking into account these limitations, the OMB algorithm will be re-evaluated and 

improved following the hybrid approach presented here when a more representative 

matchup database is produced. The creation of such a database is presently 

underway.
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APPENDIX

The NN output can be expressed as [KBG],

k

W = b + a tanh(J2 zj + P)
/=i

(A. 1)

where the u)j are the weights and 3 is the bias in the output layer, a and b are positive 

scaling factors, k is the number of hidden nodes, and zy is the output of the j-th hidden 

node, which can be expressed as

Zj = tanh(X) (A.2)

where X is a linear combination of the inputs to the NN. For any combination of inputs 

the absolute value of z, is always less than, or equal to, 1. By taking into account that 

tanh(X) is a monotonically increasing function in the interval (-1,1), we can estimate the 

theoretical upper bound WQfor the NN output Was,

w < wQ = b - P) (A3)
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TABLE 1. Parameters of power law representing foam and whitecaps coverage as a 

function of the wind speed. The threshold values are estimated for 

the coverage S = 50%.

Type of coverage a a wmax Reference

Foam & Whitecaps

Tropical regions

6.78 x 10 3 2.76 25.2

m/sec

Bortkovskii, 1987

Foam & Whitecaps

Midlatitude regions

1.71 x 10'5 4.43 28.8

m/sec

Bortkovskii, 1987

Foam & Whitecaps 7.751 x 10-4 3.231 30.8

m/sec

Swift, 1990

Whitecaps 3.84 x 10-4 3.4 31.9

m/sec

Monahan and Mac

Niocaill, 1986
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TABLE 2. Performance of GSW, SER NN, WNN4, and WNN5 algorithms for data 

under CLEAR conditic Columns 2-4 show statistics for the wind 

speeds per se, and columns 5 - 7 for the difference between buoy and 

algorithm-generated wind speeds. Each cell in the table shows two 

numbers, one (above) for training and second (below) for testing (F8 

development set). CC denotes correlation coefficient, and ow denotes 

standard deviation.

Max W Mean W ow Bias RMS CC

Buoy 17.4

19.3

6.50

6.59

2.94

2.99

N/A N/A N/A

GSW 19.3 7.47 3.46 -0.97 1.99 0.86
22.0 7.65 3.65 -1.06 2.13 0.86

SER NN 14.5 6.46 2.58 0.04 1.38 0.88
16.1 6.59 2.69 -0.01 1.41 0.88

WNN4 16.4 6.31 3.00 0.18 1.44 0.88
18.3 6.46 3.15 0.12 1.52 0.88

WNN5 16.6 6.43 2.73 0.07 1.38 0.88
18.8 6.55 2.85 0.03 1.44 0.88
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TABLE 3. Performance of GSW, SER NN, WNN4, and WNN5 algorithms for CLEAR 
plus CLOUDY case. Columns 2 - 4 show statistics for the wind speeds 
per se, and columns 5 - 7 for the difference between buoy and algorithm
generated wind speeds. Each cell in the table shows two numbers, one 
(above) for training and second (below) for testing (F8 development set). 
CC denotes correlation coefficient, and ow denotes standard deviation. 
High wind speed statistics (for w > 15 m/s) are shown in the lower part.

TOTAL Max W Mean W Ow Bias RMS CC

Buoy 21.2

19.3

6.78

6.90

3.11

3.15

N/A N/A N/A

GSW 23.5

28.8

8.10

8.32

3.90

4.06

-1.32

-1.42

2.56

2.69

0.83

0.83

SER NN 15.4

16.1

6.75

6.91

2.71

2.81

0.03

-0.01

1.52

1.56

0.87

0.87

WNN4 18.0

18.3

6.68

6.86

3.22

3.62

0.10

0.04

1.62

1.70

0.87

0.86

WNN5 19.0

18.8

6.73

6.88

2.96

3.07

0.05

0.02

1.56

1.63

0.87

0.86

W> 15 Max W Mean W Ow Bias RMS CC

Buoy 21.2

19.3

16.4

16.4

1.60

1.13

N/A N/A N/A

GSW 25.3

23.3

17.8

17.7

2.58

3.39

-1.50

-1.32

2.84

3.66

0.38

0.08

SER NN 16.6

15.5

13.8

12.9

1.35

2.10

3.08

3.51

3.52

4.13

0.27

0.16

WNN4 18.1

18.3

14.9

14.5

1.64

2.61

1.39

1.92

2.30

3.23

0.33

0.17

WNN5 19.0

18.8

14.8

14.2

1.83

2.59

1.42

2.22

2.30

3.40

0.43

0.18

34



TABLE 4. Theoretical high wind speed upper limit IA^ for three NN algorithms.

Algorithm SERNN WNN4 WNN5

W0 in m/sec 19.4 24.5 26.5
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TABLE 5. Total statistics for WNN5, BWNN4 and OMB algorithms and high wind 

speed statistics for GSW, BWNN4, and OMB algorithms for CLEAR plus 

CLOUDY conditions. Columns 2-4 show statistics for the wind speeds 

per se, and columns 5 - 7 for the difference between buoy and algorithm

generated wind speeds. Each cell in the table shows two numbers, one 

(above) for training and second (below) for testing (F8 development set). 

CC denotes correlation coefficient, and ow denotes standard deviation.

TOTAL Max W Mean W °w Bias RMS CC

Buoy 21.2

19.3

6.78

6.90

3.11

3.15

N/A N/A N/A

WNN5 19.0 6.73 2.96 0.05 1.56 0.87

18.8 6.88 3.07 0.02 1.63 0.86

BWNN4 20.6 6.99 3.50 -0.21 1.74 0.87

20.5 7.19 3.62 -0.29 1.83 0.86

OMB 22.3 6.91 3.34 -0.13 1.66 0.87

22.0 7.07 3.44 0.17 1.74 0.86

W> 15 Max W Mean W o Bias RMS CC

Buoy 21.2

19.3

16.4

16.4

1.60

1.13

N/A N/A N/A

GSW 25.3 17.8 2.58 -1.50 2.84 0.38

(w>15)

BWNN4

23.3

20.6

17.7

15.8

3.39

2.11

-1.32

0.43

3.66

2.14

*0.08

0.36

(w>15)

OMB

20.5

22.3

15.4

16.0

2.95

2.48

0.98

0.28

3.04

2.27

0.20

0.43

(w>15) 22.0 15.2 3.10 1.19 3.21 0.22
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FIGURE CAPTIONS

Fig. 1. Four parameterizations that express whitecap foam coverage versus the 

wind speed (see Table 1 also). All measurements are concentrated at the 

coverage between 0 and 30%. Extrapolations up to 100% coverage are 

shown. Solid line shows parameterization 1, dashed line - 2, dash-dotted 

line - 3, and dash-triple dotted line - 4.

Fig. 2. TB cluster centroid (see (4) in text) as a function of wind speed (a) and its 

projection on seven TB axes (b-h) - solid lines. Dashed lines show 

centroid plus (upper dashed line) minus (lower dashed line) the mean 

radius of the cluster (see (5) in the text).

Fig. 3. Binned bias versus wind speed (bin size = 1 m/sec). Dashed line shows 

the bias for the training set, dash-dotted line - for the test set, and the 

solid line is the bias correction derived from the training set (see (8) in the 

text).

Fig. 4. Binned scatter plot (bin size = 2 m/sec) of SSM/I wind speed versus buoy 

wind speed. Diamonds refer to the SER NN algorithm, crosses - WNN5, 

and asterisks - OMB algorithm.

Fig. 5. Distribution of the wind speed derived from the F8 matchup data base.

Solid line refers to the observed buoy wind speed distribution, dotted line - 

distribution generated by SER NN algorithm, dashed - by WNN5, and 

dash-dotted - by OMB algorithm.

Fig. 6. Bias and rms error statistics for F10 matchup data base as functions of

spatial (Rs in km) and temporal (Rt in hours) matchup uncertainties, (a, b)
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show statistics for clear conditions, (c, d) - for clear plus cloudy conditions, 

and (e, f) - for high wind speeds (w > 15 m/sec).

Fig.7. A synoptic event which occurred SW of Australia on 24 August 1995 as

observed by the F10 (upper row) and F13 (lower row) SSM/I instruments, (a, d) 

show the wind speed field retrieved by the GSW algorithm, (b, e) - by the SER 

NN, and (c, f) - by the OMB algorithm.
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Figure 1.
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